In situ powder X-ray diffraction study of the hydro-thermal formation of LiMn2O4 nanocrystallites.

نویسندگان

  • Steinar Birgisson
  • Kirsten Marie Ørnsbjerg Jensen
  • Troels Lindahl Christiansen
  • Jon Fold von Bülow
  • Bo Brummerstedt Iversen
چکیده

In situ measurements of the hydrothermal formation of LiMn2O4 (LMO) nanocrystallites reveal that the reaction progresses in steps, each creating a different crystalline phase. The reaction route is summarized as KMnO4→disordered δ-MnO2→(ordered δ-MnO2)→LiMn2O4→(γ-Mn2O3)→Mn3O4. The phase purity of LMO can be controlled by reaction time and temperature where phase pure LMO is obtained after 150-210 seconds at 220 °C or 45-140 seconds at 260 °C. It is also concluded that production of phase pure LMO by this method comes at the price of reduced reaction yield. From the observed reaction route an alternative way to control the phase purity is proposed by changing the amount of reducing agent. This hypothesis is rejected by a set of in situ measurements showing that the reaction kinetics of subsequent reaction steps hinders the formation of phase pure LMO. From the observation of unit cell changes as function of the transformation from LMO to Mn3O4 three distinct reaction parts are observed. This indicates that the reaction is a solid-solid reaction with a phase boundary. The in situ measurements reveal that LMO first appears in the reaction solution as thin platelets with sizes ranging from 3-13 nm. As the reaction progresses the crystallites grow faster along the [111] direction giving rod-like shaped crystallites in the end. The LMO crystallites start off with the same shape at all temperatures investigated indicating that they form from δ-MnO2 crystallites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Analysis: A Complementary Method to Study the Shurijeh Clay Minerals

Clay minerals are considered the most important components of clastic reservoir rock evaluation studies. The Shurijeh gas reservoir Formation, represented by shaly sandstones of the Late Jurassic-Early Cretaceous age, is the main reservoir rock in the Eastern Kopet-Dagh sedimentary Basin, NE Iran. In this study, X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopic (S...

متن کامل

Mechanochemical synthesis of alumina nanoparticles

Abstract: Nano- size alumina particles have been synthesized by mechanical activation of a dry powder mixture of AlCl3 and CaO. Mechanical milling of the above raw materials with the conditions adopted in this study resulted in the formation of a mixture consisting of crystalline CaO and amorphous aluminum chlorides phases. There was no sign of chemical reaction occurring during milling stag...

متن کامل

An in situ powder diffraction study of the structural mixed-phase of YBa2Cu3O6+x at 200 and 300C

In this study, the YBa2Cu3O6+x samples at temperatures 200 and 300°C, as the value of x ( the oxygen content in 0the basal plane)  increased under nearly thermodynamical equilibrium condition, the structure changed from the well- known tetragonal (T) to a mixed-phase (T+OII) region (orthorhombicII phase is a superstructure). This mixed-phase region suggests a first order T/OII phase transition ...

متن کامل

The Effect of LiFePO4 Coating on Electrochemical Performance of LiMn2O4 Cathode Material

LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles were modified by nanostructured LiFePO4 via sol gel dip coating method. Synthesized products were characterized by thermally analyzed by Thermogravimetric and Differential Thermal Analysis(TG/DTA), X-Ray Diffraction (XRD), Scanning Electron...

متن کامل

In situ powder X-ray diffraction study of magnetic CoFe2O4 nanocrystallite synthesis.

The evolution of size and size distribution during hydrothermal synthesis of nanocrystalline CoFe2O4 has been studied by in situ synchrotron powder X-ray diffraction (PXRD). Varying synthesis temperature or [OH(-)] concentration in the precursor proves to have no significant effect on the final volume-weighted nanocrystallite sizes (∼12 nm) of CoFe2O4. However, analysis by whole powder pattern ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 40  شماره 

صفحات  -

تاریخ انتشار 2014